Statistical computation and visualisation
MATH-517 / 5 crédits
Enseignant: Mhalla Ep Marchand Linda
Langue: Anglais
Withdrawal: It is not allowed to withdraw from this subject after the registration deadline.
Summary
The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice proposing efficient solutions, and effectively communicating the results with stakeholders.
Content
-
Modern statistical computing environments (e.g., R, Rstudio and Python)
- Overview of other software (e.g., MATLAB, Julia)
- Aids to efficiency and reproducibility (e.g., GitHub, Markdown, Jupyter)
-
Data management, wrangling, and ethics
- Statistical graphics (grammar, good practices, applications, and examples)
- EM algorithm and applications
- Kernel density estimation and smoothing
- Resampling methods for uncertainty assessment (bootstrap, jackknife, cross-validation), with applications to regression, time series and dependent data
-
Markov chain Monte Carlo techniques (Gibbs sampler, Metropolis-Hastings algorithm, Hamiltonian Monte Carlo, convergence diagnostics) and software (e.g., Stan)
-
Other methods for Bayesian inference (e.g., importance sampling, INLA, AGHQ, ...)
Keywords
Statistical computation, data visualisation, data wrangling, resampling methods, EM algorithm, Bayesian inference
Learning Prerequisites
Required courses
- Probability and statistics
- Linear models
Learning Outcomes
By the end of the course, the student must be able to:
- Plan complex visualisation and computational tasks
- Perform complex visualisation and computational tasks
- Implement reproducible computational solutions to statistical problems in modern environments and platforms
Transversal skills
- Take feedback (critique) and respond in an appropriate manner.
- Communicate effectively with professionals from other disciplines.
- Demonstrate the capacity for critical thinking
- Identify the different roles that are involved in well-functioning teams and assume different roles, including leadership roles.
Teaching methods
Two lecture hours per week, two hours of exercises and support on mini-projects
Expected student activities
Students will work on mini-projects in teams
Assessment methods
Contrôle continue
Supervision
Office hours | No |
Assistants | Yes |
Forum | No |
Resources
Bibliography
Wickham H. & Grolemund G. (2017) R for Data Science
Bootstrap Methods and their Application
An Introduction to Statistical Learning
Ressources en bibliothèque
- Bootstrap Methods and their Application / Davison
- An Introduction to Statistical Learning / Gareth
- R for Data Science / Wickham
Moodle Link
Prerequisite for
Applied Statistics (MATH-516)
Dans les plans d'études
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Statistical computation and visualisation
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Statistical computation and visualisation
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Statistical computation and visualisation
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Statistical computation and visualisation
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Statistical computation and visualisation
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Automne
- Forme de l'examen: Pendant le semestre (session d'hiver)
- Matière examinée: Statistical computation and visualisation
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines