Numerical integration of stochastic differential equations
Summary
In this course we will introduce and study numerical integrators for stochastic differential equations. These numerical methods are important for many applications.
Content
Introduction to stochastic processes
Ito calculus and stochastic differential equations
Numerical methods for stochastic differential equations (strong and weak convergence, stability, etc.)
Stochastic simulations and multi-level Monte-Carlo methods
Learning Prerequisites
Recommended courses
Numerical Analysis, Advanced probability
Learning Outcomes
By the end of the course, the student must be able to:
- Analyze the convergence and the stability properties of stochastiques numerical methods
- Implement numerical methods for solving stochastic differential equations
- Identify and understand the mathematical modeling of stochastic processes
- Manipulate Ito calculus to be able to perfom computation with stochastic differential equations
- Choose an appropriate numerical method to solve stochastic differential equations
Teaching methods
Ex cathedra lecture, exercises in classroom
Assessment methods
Written examination
Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.
Resources
Ressources en bibliothèque
- Stochastic Differential Equations, Theory and applications / Arnold
- Introduction to Stochastic Integration / Kuo
- An Introduction to Stochastic Differential Equations / Evans
- Stochastic Numerics for Mathematical Physics / Milstein
- Numerical Solution of Stochastic Differential Equations / Kloeden
Notes/Handbook
L. Arnold, "Stochastic Differential Equations, Theory and applications", John Wiley & Sons, 1974
L.C. Evans, "An Introduction to Stochastic Differential Equations", AMS, 2013
P.E. Kloeden, E. Platen, "Numerical Solution of Stochastic Differential Equations", Springer, 1999.
H-H. Kuo, "Introduction to Stochastic Integration", Springer, 2005.
G.N. Milstein, M.V. Tretyakov, "Stochastic Numerics for Mathematical Physics", Springer, 2004.
Moodle Link
Dans les plans d'études
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
- Semestre: Printemps
- Forme de l'examen: Ecrit (session d'été)
- Matière examinée: Numerical integration of stochastic differential equations
- Cours: 2 Heure(s) hebdo x 14 semaines
- Exercices: 2 Heure(s) hebdo x 14 semaines
Semaine de référence
Lu | Ma | Me | Je | Ve | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Cours
Exercice, TP
Projet, autre