MSE-662 / 2 credits

Teacher(s): Hoffmann Patrik Willi, Leinenbach Christian

Language: English


Frequency

Every 2 years

Summary

Provide understanding of the optical properties of materials, principles of laser operation and properties of generated light. Comprehension of basics of interaction between laser light and materials will allow analysis of the physics and chemsitry of laser processes.

Content

1) Principles of laser operation, types of lasers

2) Properties of the laser light: light controlled in time and space

3) Optical properties of the materials and their physical origin at atomic level

4) Fundamentals of light-matter interaction: linear/non-linear absorption, refractive index,  influence of light properties such as wavelength or pulse length on the process

5) Laser light delivery: imaging, focusing, high resolution patterns beam quality, resolution limits

6) Principles of laser processing: efficiency, importance of understanding heat flow, serial processing, parallel processing,

7) Applications of laser processing: bending, welding, 3-D printing, multi-photon-processing, drilling, cutting, ablation

Keywords

beam quality, wavelength dependent absorption, multiphoton processes, heat flow, laser bending, key-hole welding, laser cutting, drilling, trepanning, ultrashort-pulse processing, cold ablation, 2-photon polymerization, resolution limits

Assessment methods

Oral and oral presentation

 

In the programs

  • Exam form: Oral (session free)
  • Subject examined: Laser Materials Processing
  • Lecture: 20 Hour(s)
  • Practical work: 8 Hour(s)
  • Type: optional
  • Exam form: Oral (session free)
  • Subject examined: Laser Materials Processing
  • Lecture: 20 Hour(s)
  • Practical work: 8 Hour(s)
  • Type: optional
  • Exam form: Oral (session free)
  • Subject examined: Laser Materials Processing
  • Lecture: 20 Hour(s)
  • Practical work: 8 Hour(s)
  • Type: optional

Reference week

Related courses

Results from graphsearch.epfl.ch.