Advanced machine learning
MICRO-570 / 4 credits
Teacher:
Language: English
Remark: Pas donné en 2023-24. Cours donné tous les deux ans.
Summary
This course will present some of the core advanced methods in the field for structure discovery, classification and non-linear regression. This is an advanced class in Machine Learning; hence, students are expected to have some background in the field.
Content
- Introduction to the major mathematical principles of Machine Learning
- Structure Discovery: spectral and kernel methods, kernel PCA.CCA, kernel K-means, Spectral Clustering, Manifold Learning, Support Vector Clustering
- Advanced Classification and Nonlinear Regression Methods: nu-SVM/SVR, Relevance Vector Machine, Transductive SVM, Gaussian Processes
- Stochastic Modeling: Reinforcement Learning and Gradient Methods, Hidden Markov Models
Keywords
Machine learning, statistics
Learning Prerequisites
Required courses
Probability & Statistics, Linear Algebra
Recommended courses
Machine Learning, Pattern Recognition
Important concepts to start the course
Linear Algebra: Eigenvalue and singular value decomposition
Statistics: Definitions of probability density function, marginal, likelihood, covariance, correlation
Optimization: Lagrange multipliers, gradient descent, local and global optima
Learning Outcomes
By the end of the course, the student must be able to:
- Choose an appropriate method
- Apply the method properly
Transversal skills
- Use a work methodology appropriate to the task.
- Write a scientific or technical report.
- Make an oral presentation.
Teaching methods
The format of the course is that of a Split-Class: The theory of the course is presented through a video which students must watch prior to class. One hour of the course is allocated for this. This is following by an ex-cathedra lecture that consists of a one-hour interactive lecture session. The interactive lecture takes place on campus, but students who need it can also attend through zoom. An electronic polling system is used to engage students during the lecture.
A two-hour exercise sessions is given each week after the lecture. 4 of the weeks of the course are dedicated to computer-based practical sessions, during which students learn to use the algorithms seen in class for processing real data.
Exercise sessions and computer-based practice session are done on site only. No remote connection possible.
Expected student activities
Students are expected to watch the videos prior to the interactive lecture, as the interactive lecture will not repeat the video but go in more depth in the concepts presented in the videos.
Students are expected to attend the exercise sessions and the computer-based practice sessions. They should revise the class notes prior to going to practical session to be on top of the the theoretical material prior to applying it.
Students who are no longer up to date with the pre-requisites should work on these in parralel to taking the class.
Assessment methods
40% of the grade based on personal work during semester (project or in-class critical reading of a paper) and the residual 60% based on oral exam
Supervision
Office hours | No |
Assistants | Yes |
Forum | Yes |
Resources
Virtual desktop infrastructure (VDI)
No
Ressources en bibliothèque
Notes/Handbook
Machine Learning Techniques, available at the Librairie Polytechnique. To be purchased before the class starts.
Moodle Link
Videos
Prerequisite for
Students must be knowledgeable about machine learning and have taken a course in the area either at EPFL or elsewhere. Relevant courses at EPFL are:
Applied Machine Learning - MICRO-455
Pattern Classification and Machine Learning: CS-433
Data Analysis and Model Classification - EE-516
In the programs
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
- Semester: Spring
- Exam form: Oral (summer session)
- Subject examined: Advanced machine learning
- Lecture: 3 Hour(s) per week x 14 weeks
- Exercises: 1 Hour(s) per week x 14 weeks
- Project: 1 Hour(s) per week x 14 weeks
Reference week
Mo | Tu | We | Th | Fr | |
8-9 | |||||
9-10 | |||||
10-11 | |||||
11-12 | |||||
12-13 | |||||
13-14 | |||||
14-15 | |||||
15-16 | |||||
16-17 | |||||
17-18 | |||||
18-19 | |||||
19-20 | |||||
20-21 | |||||
21-22 |
Légendes:
Lecture
Exercise, TP
Project, other